Stability Analysis for a Class of Switched Systems
نویسندگان
چکیده
منابع مشابه
Stability Analysis for a Class of Nonlinear Switched Systems
In the present paper, we study several qualitative properties of a class of nonlinear switched systems under certain switching laws. First, we show that if all the subsystems are linear time-invariant and the system matrices are commutative componentwise and stable, then the entire switched system is globally exponentially stable under arbitrary switching laws. Next, we study the above linear s...
متن کاملStability analysis for class of switched nonlinear systems
Stability analysis for a class of switched nonlinear systems is addressed in this paper. Two linear matrix inequality (LMI) based sufficient conditions for asymptotic stability are proposed for switched nonlinear systems. These conditions are analogous counterparts for switched linear systems which are shown to be easily verifiable and suitable for design problems. The results are illustrated b...
متن کاملStability analysis for a class of switched large-scale time-delay systems via time-switched method
One new criterion of delay-independent stability for the switched time-delay large-scale system is deduced by employing a time-switched method and the comparison theorem. The total activation time ratio of the switching law can be determined to guarantee that the switched time-delay system is exponentially stable with stability margin l. One example is exploited to illustrate the proposed schemes.
متن کاملStability of a Special Class of Switched Positive Systems
This paper is concerned with the existence of a linear copositive Lyapunov function(LCLF) for a special class of switched positive linear systems(SPLSs) composed of continuousand discrete-time subsystems. Firstly, by using system matrices, we construct a special kind of matrices in appropriate manner. Secondly, our results reveal that the Hurwitz stability of these matrices is equivalent to the...
متن کاملStability and L2 Gain Analysis for a Class of Switched Symmetric Systems
In this paper, we study stability and L2 gain properties for a class of switched systems which are composed of a finite number of linear time-invariant symmetric subsystems. We focus our attention mainly on discrete-time systems. When all subsystems are Schur stable, we show that the switched system is exponentially stable under arbitrary switching. Furthermore, when all subsystems are Schur st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 2000
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.36.409